Protein secondary structure prediction using distance based classifiers
نویسندگان
چکیده
منابع مشابه
Protein secondary structure prediction using distance based classifiers
De novo structure determination of proteins is a significant research issue of bioinformatics. Biochemical procedures for protein structure determination are costly. Use of different pattern classification techniques are proved to ease this task. In this article, the secondary structure prediction task has been mapped into a three-class problem of pattern classification, where the classes are h...
متن کاملProtein Secondary Structure Classifiers Fusion Using OWA
The combination of classifiers has been proposed as a method to improve the accuracy achieved by a single classifier. In this study, the performances of optimistic and pessimistic ordered weighted averaging operators for protein secondary structure classifiers fusion have been investigated. Each secondary structure classifier outputs a unique structure for each input residue. We used confusion ...
متن کاملBayesian network multi-classifiers for protein secondary structure prediction
Successful secondary structure predictions provide a starting point for direct tertiary structure modelling, and also can significantly improve sequence analysis and sequence-structure threading for aiding in structure and function determination. Hence the improvement of predictive accuracy of the secondary structure prediction becomes essential for future development of the whole field of prot...
متن کاملCascaded multiple classifiers for secondary structure prediction.
We describe a new classifier for protein secondary structure prediction that is formed by cascading together different types of classifiers using neural networks and linear discrimination. The new classifier achieves an accuracy of 76.7% (assessed by a rigorous full Jack-knife procedure) on a new nonredundant dataset of 496 nonhomologous sequences (obtained from G.J. Barton and J.A. Cuff). This...
متن کاملProtein secondary structure prediction using logic-based machine learning.
Many attempts have been made to solve the problem of predicting protein secondary structure from the primary sequence but the best performance results are still disappointing. In this paper, the use of a machine learning algorithm which allows relational descriptions is shown to lead to improved performance. The Inductive Logic Programming computer program, Golem, was applied to learning second...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Approximate Reasoning
سال: 2008
ISSN: 0888-613X
DOI: 10.1016/j.ijar.2007.03.007